ADVANCEMENTS IN MITIGATING RECIDIVISM WITHIN JUDICIAL DELIBERATIONS

Main Article Content

SULASAT.J. , RAMESH KUMAR

Abstract

This research article examines the evolving approaches to recidivism in judicial decision-making. Recidivism, which refers to the reoffending behaviour of individuals who have previously been convicted of a crime, has long been a concern for the criminal justice system. Traditional approaches to recidivism focused primarily on punitive measures, such as incarceration, without adequately addressing the underlying factors contributing to reoffending. However, in recent years, there has been a shift toward more nuanced and evidence-based strategies aimed at reducing recidivism rates and promoting rehabilitation. This article explores the changing landscape of recidivism and highlights the key factors shaping judicial decision-making in this context.

Article Details

Section
Articles
Author Biography

SULASAT.J. , RAMESH KUMAR

SULASAT.J.1 , DR. RAMESH KUMAR2

Research Scholar

Lovely Professional University, Phagwara, Punjab, India

Assistant Professor & Research Coordinator of Law, School of Law
Lovely Professional University, Phagwara, Kapurthala, Punjab, India-144411
Orchid Id: 0000-0003-2771-7274
Web of Science Researcher ID: AGF-7498-2022

 

References

Artificial Intelligence and Sentencing from a Human Rights Perspective

Johannes Kaspar, Stefan Harrendorf, Felix Butz, Katrin Höffler, Lucia Sommerer & Stephan Christoph ,Chapter First Online: 13 January 2023

Aebi, M.F., Caneppele, S., Harrendrf, S., Hashimoto, Y.Z., Jehle, J.-M., Khan, T.S., Kühn, O., Lewis, C., Molnar, L., Smit, P., Þórisdóttir, R. and the ESB Network of National Correspondents (2021). European sourcebook of crime and criminal justice statistics—2021 (6 ed.). Göttingen University Press: Göttingen.

CrossRef Google Scholar

Alfaia Sampaio, E., Seixas, J.J. & Gomes, P.J. (2019). Artificial Intelligence and the judicial ruling. Themis Competition 2019, Semi-Final D, Team Portugal I. https://www.ejtn.eu/PageFiles/17916/TEAM%20PORTUGAL%20I%20TH%202019%20D.pdf. Accessed 3 February 2022.

Alufaisan, Y., Marusich, L. R., Bakdash, J. Z., Zhou, Y. &Kantarcioglu, M. (2021). Does explainable artificial intelligence improve human decision-making? In: Proceedings of the AAAI Conference on Artificial Intelligence, 35(8), 6618–6626. https://www.ojs.aaai.org/index.php/AAAI/article/view/16819. Accessed 20 April 2022.

Angwin, J., Larson, J., Mattu, S. & Kirchner, L. (2016). Machine bias. There’s software used across the country to predict future criminals. And it’s biased against blacks. https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing. Accessed 22 November 2021.

Bagaric, M., Hunter, D. &Stobbs, N. (2020). Erasing the bias against using artificial intelligence to predict future criminality. Algorithms are color blind and never tire. University of Cincinnati Law Review, 88, 1037–1082. Google Scholar

Bagaric, M., Svilar, J., Bull, M., Hunter, D. and Stobbs, N. (2021). The solution to the pervasive bias and discrimination in the criminal justice. Transparent artificial intelligence. https://ssrn.com/abstract=3795911. Accessed 22 November 2021.

Bontrager, S., Barrick, K., &Stupi, E. (2013). Gender and sentencing. Meta-analysis of contemporary research. Journal of Gender, Race and Justice, 16, 349–372.Google Scholar

Botha, H. (2009). Human dignity in comparative perspective. Stellenbosch Law Review, 20, 171–220.Google Scholar

Brayne, S. & Christin, A. (2021). Technologies of crime prediction. Reception of algorithms in policing and criminal courts. Social Problems, 68, 608–624CrossRef Google Scholar

Burrell, J. (2016). How the Machine ‘Thinks’. Understanding Opacity in Machine Learning Algorithms. Big Data & Society, 3, 1–12.CrossRef Google Scholar

Botha, H. (2009). Human dignity in comparative perspective. Stellenbosch Law Review, 20, 171–220. Google Scholar

Brayne, S. & Christin, A. (2021). Technologies of crime prediction. Reception of algorithms in policing and criminal courts. Social Problems, 68, 608–624CrossRef Google Scholar

Burrell, J. (2016). How the Machine ‘Thinks’. Understanding Opacity in Machine Learning Algorithms. Big Data & Society, 3, 1–12.CrossRef Google Scholar

Butz, F., Christoph, S., Sommerer, L., Harrendorf, S., Kaspar, J. &Höffler, K. (2021). AutomatisierteRisikoprognosenimKontext von Bewährungsentscheidungen. Bewährungshilfe, 68, 241–259. Google Scholar

Bygrave, L.A. (2020). Machine learning, cognitive sovereignty and data protection rights with respect to automated decisions.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3721118.Accessed 22November 2020.

Carlson, A.M. (2017). The need for transparency in the age of predictive sentencing algorithms. Iowa Law Review, 103, 303-329. Google Scholar

Chander, A. (2017). The racist algorithm? Michigan Law Review, 115, 1023–1045.CrossRef Google Scholar

Chen, S. (2021). Chinese scientists develop AI ‘prosecutor’ that can press its own charges. South China Morning Post, 26 December 2021.

https://www.scmp.com/news/china/science/article/3160997/chinese-scientists-develop-ai-prosecutor-can-press-its-own. Accessed 24 January 2022.

Christin, A. (2019). Predictive algorithms and criminal sentencing. In: Bessner D and Guilhot N (eds.) The Decisionist Imagination. Sovereignty, Social Science, and Democracy in the 20th Century, Berghahn Books: New York, 272–294. Google Scholar

Commissioner for Human Rights. (2019). Unboxing artificial intelligence. 10 steps to protect Human Rights. Council of Europe. https://rm.coe.int/unboxing-artificial-intelligence-10-steps-to-protect-human-rightsreco/1680946e64.Accessed 22 November 2021.

Committee of Experts on Internet Intermediaries (MSI-NET). (2018). Algorithms and human rights. Study on the human rights dimensions of automated data processing techniques and possible regulatory implications. Council of Europe study, DGI(2017)12. https://rm.coe.int/algorithms-and-human-rights-study-on-the-human-rights-dimension-of-aut/1680796d10. Accessed 3 February 2022.Council of Europe. (2021). EU accession to the

ECHR. https://www.coe.int/en/web/human-rights-intergovernmental cooperation/accession-of-the-european-union-to-the-european-convention-on-human-rights.Accessed 24 January 2022.

Cyphert, A.B. (2020). Reprogramming recidivism. The First Step Act and algorithmic prediction of risk. Seton Hall Law Review, 51, 331–381. Google Scholar

Danaher, J. (2020). Welcoming robots into the moral circle: A defence of ethical behaviourism. Science and Engineering Ethics, 26, 2023–2049. CrossRef Google Scholar

Deeks, A. (2019). The judicial demand for explainable artificial intelligence. Columbia Law Review, 119, 1829–1850. Google Scholar

Dressel, J. & Farid, H. (2018). The accuracy, fairness, and limits of predicting recidivism. Science Advances, 4. Google Scholar

Duwe, G. & Kim, K. (2017). Out with the old and in with the new? An empirical comparison of supervised learning algorithms to predict recidivism. Criminal Justice Policy Review, 28, 570–CrossRef Google Scholar

Duwell, M. (2014). Human Dignity: Concept, Discussions, Philosophical Perspectives: Interdisciplinary Perspectives. In: Duwell, M., Braarvig, J., Brownsword, R. &Mieth, D. (eds.) Cambridge Handbook on Human Dignity. Cambridge: Cambridge University Press, 23–50.CrossRef Google Scholar

Dymitruk, M. (2019). The right to a fair trial in automated civil proceedings. Masaryk University Journal of Law and Technology, 13, 27-44.CrossRef Google Scholar

Elsner, B., Aebi, M.F., Aubusson de Cavarlay, B., Gillieron, G., Hakeri, H., Jehle, J.-M., Killias, M., Lewis, C., Peters, J., Roth, E., Smit, P., Sobota, P., Turkovic, K., Wade, M. & Zila, J. (2008). The Criminal Justice Approach: Case Examples. European Journal on Criminal Policy and Research, 14, 123-132. CrossRef Google Scholar

European Commission for the Efficiency of Justice (CEPEJ). (2018). European Ethical Charter on the use of artificial intelligence (AI) in judicial systems and their environment. https://rm.coe.int/ethical-charter-en-for-publication-4-december-2018/16808f699c. Accessed 22 November 2021.

European Court of Human Rights (ECtHR) (2021). Overview 1959–2020 ECHR. https://www.echr.coe.int/Documents/Overview_19592020_ENG.pdf. Accessed 1 February 2022.

European Criminal Policy Institute (2020). Category model for the harmonisation of criminal sanctions in Europe. In Satzger, H. (ed.) HarmonisierungstrafrechtlicherSanktionen in der Europäischen Union – Harmonisation of Criminal Sanctions in the European Union. Nomos: Baden-Baden, 707–742. Google Scholar

Fair Trials (2020). Regulating artificial intelligence for use in criminal justice systems in the EU. Policy paper.

https://www.fairtrials.org/sites/default/files/RegulatingArtificialIntelligenceforUseinCriminalJusticeSystems-FairTrials.pdf. Accessed 3 February 2022.

Ghasemi, M., Anvari, D., Atapour, M., Wormith, J.S., Stockdale, K.C. & Spiteri, R.J. (2021). The application of machine learning to a general risk-need assessment instrument in the prediction of criminal recidivism. Criminal Justice and Behavior, 48, 518–538. CrossRef Google Scholar

Gipson Rankin, S.M. (2021). Technological tethered. Potential impact of untrustworthy artificial intelligence in criminal justice risk assessment instruments. Washington and Lee Law Review, 78, 647–724. Google Scholar

Grabenwarter,C.&Pabel,K.(2021). EuropäischeMenschenrechtskonvention (7th ed.). München: C.H. Beck. CrossRef Google Scholar

51.Greco, L. (2020). RichterlicheMachtohnerichterlicheVerantwortung. Warum es den Roboter-Richter nichtgebendarf. Rechtswissenschaft, 11, 29–62.CrossRef Google Scholar

Grundies, V. (2016). GleichesRecht für alle? – Eine empirische Analyse lokalerUnterschiede in der Sanktionspraxis in der Bundesrepublik Deutschland. In Neubacher, F. &Bögelein, N. (eds.) Krise – Kriminalität – Kriminologie, Mönchengladbach: Forum Verlag Godesberg, 511–525. Google Scholar

Grundies, V. (2018). RegionaleUnterschiede in der gerichtlichenSanktionspraxis in der Bundesrepublik Deutschland. Eine empirische Analyse. In Hermann, D. &Pöge, A. (eds.) Kriminalsoziologie. Nomos: Baden-Baden, 295–316.Google Scholar

Herz, C. (2020). Striving for consistency: Why German sentencing needs reform. German Law Journal, 21, 1625–1648. CrossRef Google Scholar

55.Hinkkanen, V. &Lappi-Seppälä, T. (2011). Sentencing theory, policy, and research in the nordic countries. Crime and Justice, 40, 349–404. CrossRef Google Scholar

Jehle, J.-M., Lewis, C., Nagtegaal, M., Palmowski, N., Pyrcak-Górowska, M., van der Wolf M. & Zila, J. (2021). Dealing with dangerous offenders in Europe. A comparative study of provisions in England and Wales, Germany, the Netherlands, Poland and Sweden. Criminal Law Forum, 32, 181–245. CrossRef Google Scholar

Kaspar, J., Höffler, K. &Harrendorf, S. (2020). Datenbanken, Online-Votings und künstlicheIntelligenz—PerspektivenevidenzbasierterStrafzumessungimZeitalter von “Legal Tech”. Neue Kriminalpolitik, 32, 35–56. Google Scholar

Kehl, D., Guo, P. & Kessler, S. (2017). Algorithms in the criminal justice system. Assessing the use of risk assessments in sentencing. http://nrs.harvard.edu/urn-3:HUL.InstRepos:33746041. Accessed 22 November 2021. Kohn, B. (2021). KünstlicheIntelligenz und Strafzumessung, Baden-Baden: Nomos. Google Scholar

Länderarbeitsgruppe. (2019). Legal Tech: Herausforderungen für die Justiz. Abschlussbericht. https://www.schleswigholstein.de/DE/Landesregierung/II/Minister/Justizministerkonferenz/Downloads/190605_beschluesse/TOPI_11_Abschlussbericht.pdf?__blob=publicationFile&v=1. Accessed 8 February 2022.

Langford, M. (2020). Taming the digital leviathan: Automated decision-making and international human rights. American Journal of International Law Unbound, 114, 141–146. Google Scholar

Lappi‐Seppälä, T. (2007). Penal policy in Scandinavia. Crime and Justice, 36, 217–295. Google Scholar

Lara, F. &Deckers, J. (2020). Artificial intelligence as a Socratic assistant for moral enhancement. Neuroethics, 13, 275–287. CrossRef Google Scholar

Lee, M. K. (2018). Understanding perception of algorithmic decisions: Fairness, trust, and emotion in response to algorithmic management. Big Data & Society, 5, 1–16. CrossRef Google Scholar

Lindner, B., Neumann, L. &Pohlmann, S. (2020). Comparative Conclusion. In Satzger, H. (ed.) HarmonisierungstrafrechtlicherSanktionen in der Europäischen Union—Harmonisation of Criminal Sanctions in the European Union. Nomos: Baden-Baden, pp. 517–540. Google Scholar

Lyell, D. &Coiera, E. (2017). Automation bias and verification complexity. A systematic review. Journal of the American Medical Informatics Association, 24, 423–431. .CrossRef Google Scholar

Mavronicola, N. (2015). Crime, Punishment and Article 3 ECHR: Puzzles and Prospects of Applying an Absolute Right in a Penal Context. Human Rights Law Review, 15, 721–743. .CrossRefGoogle Scholar

Meyer-Ladewig, J. &Nettesheim, M. (2017). Artikel 8 EMRK. Recht auf Achtung des Privat—und Familienlebens. In: Meyer-Ladewig, J., Nettesheim, M. & v. Raumer, S. (eds.) EMRK: EuropäischeMenschenrechtskonvention—Handkommentar (4 ed.) Nomos: Baden-Baden. Google Scholar

McLuhan, M. & Fiore, Q. (2001). The Medium is the Message. An Inventory of Effects, Corte Madera: Gingki Press Inc. Google Scholar