
RUSSIAN LAW JOURNAL Volume XI (2023) Issue 3

377

PERFORMANCE EVALUATION OF THE SECURITY LEVEL OF OAUTH 2.0
IN THE IMPLEMENTATION OF AUTHORIZATION SYSTEMS FOR ACCESS

TO WEB RESOURCES ON CLOUD-BASED PLATFORMS

DIEGO VELOZ CHÉRREZ1, GUILLERMO VALENCIA2, FABRICIO JAVIER SANTACRUZ SULCA3, DIEGO
RAMIRO ÑACATO ESTRELLA4

1Escuela Superior Politécnica del Chimborazo (ESPOCH)
Riobamba, Ecuador

diego.veloz@espoch.edu.ec
ORCID: https://orcid.org/0000-0002-6084-2213

2valepetroguillo@gmail.com
https://orcid.org/0000-0002-3938-2021

3Escuela Superior Politécnica del Chimborazo (ESPOCH)
Riobamba, Ecuador

fabricio.santacruz@espoch.edu.ec
https://orcid.org/0000-0001-7123-2552

4Escuela Superior Politécnica del Chimborazo (ESPOCH)
Riobamba, Ecuador

diego.nacato@espoch.edu.ec
https://orcid.org/0000-0002-7233-9076

Abstract— The demand for remote access has experienced exponential growth., making it
difficult for users to maintain different accounts for each service they use. In the traditional client-
server authentication model, clients enter their credentials, usually usernames and passwords, to
request a restricted access resource from servers. However, there are some drawbacks with these
processes: decreased confidentiality, user sensitivity to phishing, full access to resources and
limited reliability. The purpose of this paper was to assess the security level of access control over
resources on cloud-based platforms by implementing two real scenarios, one with a traditional
authentication system and the other implementing an access authorization system using the OAuth2
framework. To reach this goal, an infrastructure has been created, using virtualization approaches,
which sends requests to the server that owns the resources and this in turn communicates through
APIs to a database server in AWS. The OWASP project was used to analyze the vulnerabilities in
these scenarios, studying the exposure of confidential information, level of access to resources,
alert control, as well as system response time parameters to measure their efficiencies. The results
showed that the implementation of OAuth2, as the basis for authorization systems, improves
security in the exchange of client-server messages through the implementation of tokens, reduces
the exposure of confidential information, facilitates access to resources on different platforms and
even makes it easy to assign roles and levels of access to resources.

Keywords—cloud computing, web resources, REST APIs, design pattern, telematic security

I. INTRODUCTION

Every smart electronic device connected to the Internet has access to Cloud computing servers,
which allows information to be shared through computing platforms [2]. This exchange of
information is transmitted through public or private infrastructures, which leads to the definition of
methods of authentication and authorization to control access and who can reach data.
In traditional authentication models, clients enter their credentials (usually a username and
password) to request a restricted or protected resource from the server. However, sending
sensitive user information creates side effects such as decreased confidentiality, user sensitivity to
phishing, full access to resources, limited reliability, and difficulty implementing stronger
authentication. Additionally, user credentials are saved in plain text in third-party applications for
future access to resources and without the possibility of restricting the duration of the
authorization or limiting the amount of information that is reached and the difficulty to revoke that
permission granted [6].
The demand for remote data access has grown exponentially making it difficult for users to
maintain different accounts for every service they use [7]. As the Internet has developed, different
web services have cooperated to create mash-up services. In this case, the owner of a resource
must be authenticated by the server that stores the resource, and a third-party web application
must be authorized to access the resource [20]. One solution to this problem is the OAuth 2.0
framework, which uses a single account to identify users across different services without sharing
or transferring passwords. The aim of this work was the evaluation of security levels for
authentication and authorization systems in clouding platforms by sending access requests and
measuring the exchange of messages between servers and clients. For this purpose, two
infrastructure models were implemented, a traditional user and password authentication approach
and the other one based on a resource access approach through access tokens using the OAuth 2.0
protocol.

mailto:diego.veloz@espoch.edu.ec

RUSSIAN LAW JOURNAL Volume XI (2023) Issue 3

378

II. OAUTH 2.0

OAuth is an emerging authorization standard that has been adopted by an increasing
number of websites such as Twitter, Facebook, Google, Yahoo!, Netflix, Flickr, and many other
social media and resource providers. It has an open-web specification, so that organizations can
access protected resources between different websites. This is achieved by giving users
permission to access protected content in third-party applications without having to send
credentials to these applications [4] [11].

OAuth 2.0 defines a secure access framework for Application Programming Interfaces
(APIs), typically RESTful, to acquire protected resources. There are three primary participations
in the OAuth flow: The client (an application that requests information), who sends an API query
to a resource server (RS); The server resource, which hosts the desired resource or data and
validate the authentication message that was sent by the client; and the access token provided
by the authorization server (AS), which is included in client's API message [5].

OAuth 2.0 includes:
1. A web redirection mechanism that a resource owner can delegate authorizations to their

resources (for example, their profile) to some third-party site.
2. Identity mechanisms that can be used by the resource owner to delegate their identity

attributes for client applications such as desktop, mobile, and Internet of Things (IoT).
3. A restricted Security Token Service (STS) model notably based on REST principles rather than

SOAP messaging. The STS issues tokens and updates expired tokens.
4. A set of mechanisms for REST-based HTTP APIs, including:

• Protect the identity attributes of resource owners that require consent.

• Protect the identity attributes of resource owners that are implied.

• Protect specific data of the resource owner that do not require consent [5].

III. METHOD

The main objective of this work is to evaluate the security level provided by authorization systems
in contrast to traditional authentication systems where the client enters their credentials
(username and password) to request a restricted or protected access resource to the server [9].
Therefore, to establish the architecture to be implemented, the roles defined by the OAuth 2.0
protocol were considered and fulfilled in the design of this study:

• Resource Owner (RO): It is the owner of a resource, usually hosted on a resource server, who
specifies the authorizations to be created on the authorization server. Authorizations are
defined through an access token issued to the client [5] [13].

• Resource server: Actor in charge of protecting resources and making them available to
authenticated and authorized clients.

• Authorization Server (AS): It issues access and updates tokens to clients.

• Access token: It is a string that represents an authorization issued to the client. They are
credentials used to access protected resources. The tokens represent specific scope and
duration of access, granted by the resource owner and enforced by the resource server and
authorization server.

• Refresh Token: A long-lived token that the client can exchange with the authorization server to
obtain a new access token with the same authorizations provided in the expired token.

• Client: It is the application that sends requests to access a resource protected by the resource
server and interacts with an authorization server to obtain access tokens.

A. Environment design

The test environment consists of creating a client application, which sends requests to both the
resource server and the authorization server in order to access restricted resources. These servers
are in the cloud to allow customer access from anywhere and through any device that has Internet
access.

Two test scenarios were defined to contrast the level of security between traditional access
systems and authorization systems using tokens: The first scenario where the content server allows
access to resources through user and password sent by the client. The other scenario has been
created taking into account an authorization approach through token validation.

To test the performance of each authentication and authorization system, an Inventory System
(IS) was used on the cloud resource server.

RUSSIAN LAW JOURNAL Volume XI (2023) Issue 3

379

Figure 1. OAuth 2.0 Protocol flow [13]

B. Classic authentication system

In this scenario, the client application makes HTTP requests [16], with a basic authentication of
user credentials (username and password) previously created in the PostgreSQL database hosted
in Amazon Web Service (AWS), to request resources with read-only access permissions of the
Inventory System (SI) located on the Heroku Resource Server (SR), as shown in Figure 2. The
client application uses PHP programming language and consists mainly of the Aws.php class file
and the test_basic.php file. Aws.php takes the user credentials and makes a number of HTTP
requests to the resource server that is defined by the sample size as specified in the calculation
at the end of this section. The programming code of the Client Application and the configuration
of the AWS class are detailed in annex 2.

Figure 2. Access system through classic authentication

The function of each part of the system is described below:

• Github: Uses the Git version control system to host the client application and the inventory
system to access shared resources. The software that runs GitHub is written in Ruby on Rails.

• Vagrant: The client uses the Vagrant virtualized environment tool that uses a VirtualBox
instance as the image base and configures the software and hardware resources through the
Vagrantfile file as shown in Annex 2. This virtualization approach allows for scalability and
makes the system more efficient.

• PostgreSQL: It is an open source, object-oriented relational database management system used
to store inventory system information that contains resources to be accessed.

• Inventory system: Web application located in the resource server to issue and control access to
web resources. The inventory system uses Model View Controller (MVC), where the controller
allows the access to the resources.

• Heroku (RS): Resource server that takes client requests and verifies their credentials to deliver
or deny the requested resource. The characteristics of this server are:
o Description: Canonical, Ubuntu, 18.04 LTS, amd64 bionic image build on 2019-07-22
o Status: available
o Platform details: Linux/UNIX

RUSSIAN LAW JOURNAL Volume XI (2023) Issue 3

380

o Platform: Ubuntu
o Image Size: 8GB
o Visibility: Public
o Network interfaces: eth0

• Cloudwatch Metric: It measures AWS data base performance parameters.

C. Authorization system using access tokens

In this second scenario, the client application requests an access authorization token from the
authorization server hosted at CEDIA through an HTTP Request [16], with client credentials
previously created in the SQLite engine database, to request the resources with read-only access
permissions located in the inventory system on the Heroku resource server, as shown in the
following figure.

Figure 3. Access authorization system using tokens

Common parts of this system between the previous system performs the same function, with the
following differences:

• CEDIA Server: It is a Platform as a Service (PAAS) where a virtual machine performs the function
of authorization server for token generation. The setup of this server is shown in the following
figure:

Figure 4. CEDIA server resources

• Docker: CEDIA server is defined with a container approach for portability of the systems to be
implemented. The function of Docker is authorization tokens generation of JSON Web Token
type (JWT) for access to resources. The docker compose setup is as follows:

version: '3.7'
volumes:
 logs:
 driver: local
services:
 slim:
 image: php:7-alpine
 working_dir: /var/www
 command: php -S 0.0.0.0:8080 -t public
 environment:
 docker: "true"
 ports:
 - 8080:8080
 volumes:

RUSSIAN LAW JOURNAL Volume XI (2023) Issue 3

381

 - .:/var/www
 - logs:/var/www/logs

• SQLite: It is a small relational database that has the function of registering the information of
the authorization system as well as authorization and update tokens. The setup is detailed in
annex 3.

• The client requests a JWT access token from the Access Server (SA) which runs in a Docker
container. This token is verified in the Heroku SR through public and private keys.

D. Application registry

Before using OAuth, the application must be registered through authorization server tfilling a
registration form in the service's website developer API. The fllowing information must be provided:

• The name of the application

• The application website

• Redirect URI or Callback URL

Redirect URI will redirect the user after the request is authorized or denied, then the application
will handle authorization codes or access tokens [13].
After the application is registered, the service will issue the credentials to the client application in
the form of:
Client ID: Specified as the client_id when interacting with the resource server.
Client Secret: Specified as client_secret when exchanging an authorization code for an access
token and a refresh access token used on the server side of the application's web stream [14].
The authorization grant types depend on the method used by the application and the authorization
types supported by the API. OAuth 2.0 defines three types of authorization, depending on each
case:

• Authorization Code – Used in server-side applications.

• Permission based on the resource owner's password: this type of permission is used only for
trusted clients.

• Client credentials: allows an application to obtain an access token from the authorization
server by sending its credentials (client id and client secret). This type of permission is suitable
for applications that need access APIs such as storage or database services [13].

E. Vulnerability Analysis

The security level of both scenarios was evaluated considering the Open Web Application
Security Project (OWASP) by using its OWASP ZAP tool.

Figure 5. Owasp zap autoscan

The resource and authorization servers URL was included in this tool, as shown in Figure 5, to

determine the security information properties, such as confidentiality, integrity and availability
were guaranteed by both scenarios as well as to measure the level of exposure each one has.

RUSSIAN LAW JOURNAL Volume XI (2023) Issue 3

382

Therefore, the following variables were taken into consideration in the test plan detailed in the
following table:

TABLE I. VARIABLES OF ANALYSIS

Variable Measure unit

Flow
communication
control

 Response time of data
transmission measured in
milliseconds

Authentication
and authorization

Number of authorization and
authentication mechanisms

Roles and scope
Availability and scope by
differentiating the types of
access to resources

Traffic
encryption

Encryption types

Alerts and
monitorization

Number of alert types allowed
by cloud services

Threat protection
Number of protection
mechanisms against threats
and attacks

F. Sampling and statistic analysis

The amount of access attempts to web service resources in a cloud-computing environments
was considered as statistical population for the study. Due to the difficulty to determine the
number of access attempts to define the observation experiment that could lead to a very large
number, thus an infinite population was considered.

The selection of the study sample was obtained through the statistical formula that
determines its size considering the study parameter and the type of population.

 ;
Where:
e: Margin of error => (0.05)
n: Sample size
z: Confidence level => (1.96)
p: Sample proportion => (0.5)
q: Uncertainty => (0.5)

n=384.16

Therefore, sample size is 385.

Accordingly, the number of requests that the Client Application must generate in each scenario is
385 HTTP request.

RUSSIAN LAW JOURNAL Volume XI (2023) Issue 3

383

For the analysis of each variable considering the size of the sample, R software environment was
used due to its easy interpretation through its command line, which facilitates the manipulation of
the large amounts of data obtained.

Figure 6. Data framework creation

IV. RESULTS

The measurement of the variables defined in Table 1 was carried out for each scenario in order
to compare the findings and define the security level of each system.

To access the web resources in the cloud server, a REST API was created for each scenario, which
allows establishing connection and message exchange between clients and servers

On the other hand, for the analysis of the measurements of the variables, for each case it was
verified if there is a normal data distribution to define the analysis criteria.

A. Response time

According to the central limit theorem, regardless of the content of the distribution, the sample
distribution tends to be normal if the sample size is large enough (n>30) [17]. It can be ignored data
distribution and use a parametric test. However, to demonstrate this approach, a visual inspection is
showed in the next figures with a density plot and a quantile plot using R's ggplot and qqplot plotting
tools..

Figure 7. Data density for classic authentication system

RUSSIAN LAW JOURNAL Volume XI (2023) Issue 3

384

Figure 8. Data density for classic authentication system

It is possible to use a test of significance comparing the sample distribution with a normal

distribution to determine if the data presents a serious deviation from normality. There are several
methods to perform normality tests such as Kolmogorov-Smirnov (K-S) normality and Shapiro-Wilk's.
Shapiro-Wilk's is the most widely used method for normality testing, and provides better results than
K-S. It is based on the correlation between the data and its normal results [18].

Figure 9. AWS Shapiro Test

As can be seen in the previous figure, p-value is less than 0.05, which implies the sample data has
a significance of the normal distribution, it means that the data does not have a normal distribution.
Therefore, a comparison is made based on time between all the measurements for the two
scenarios, obtaining the average values shown in the following table.:

TABLE II. RESPONSE TIME

Classic authentication
scenario

Authorization using
tokens scenario

1.9098 ms 1.0290 ms

B. Authentication and authorization

Annex 7 shows the REST API application code that allows the exchange of messages between the
client and servers for each scenario and defines the measurement mechanisms. The measurement
results are shown below:

RUSSIAN LAW JOURNAL Volume XI (2023) Issue 3

385

TABLE III. AUTHENTICATION AND AUTHORIZATION MECHANISMS

C. Roles and scope of access control

The authorization process starts when the client authentication process is correct. The detail of
the REST API application code that defines the roles and access scope of each client is shown in
Annex 8. The results of the measurements are shown below:

TABLE IV. MECHANISMS USED IN THE DEFINITION OF CUSTOMER ROLES

Classic authentication scenario Authorization using tokens scenario

• Access role by controller

• Unique role based on OAuth2.0 access token

• Role based on JWT token expiration

• Role based on JWT token scope

1 mechanism 3 mechanisms

D. Traffic encryption

The following table shows the valuation of encryption and encryption based on the quantity and
quality of mechanisms implemented in the exchange of messages for each of the scenarios. Annex 9
details the REST API code.

TABLE V. ENCYPTION MECHANISMS

Classic authentication scenario Authorization using tokens scenario

• Base 64 user credential encoded

• SHA256 Algorithm in header

• Base 64 payload encoded

• HMACSHA256 sign

1 mechanism 3 mechanisms

E. Alerts and monitoring

The following table shows the mechanisms present in each system. The REST API code is shown in
annex 10.

TABLE VI. ALERT AND MONITORING MECHANISMS

Classic authentication scenario Authorization using tokens scenario

• Trigger after new session SQL in data base

• Monitoring of recent activities by access token

• Configuration of alerts and notifications in the
middleware

• HTTP status codes

1 mechanism 3 mechanisms

Classic authentication
scenario

Authorization using
tokens scenario

• Basic authentication
(user/password)

• Id session cookie
token

• base64_encode
(application/Secret)

• Access Token JWT

• JWT with scope and
expiration

2 mechanisms 3 mechanisms

RUSSIAN LAW JOURNAL Volume XI (2023) Issue 3

386

F. Protection mechanisms against threats

The Open Web Application Security Project (OWASP) defines the top 10 vulnerabilities present in
web applications. For this reason, this methodology was used to analyze the vulnerabilities detailed
in the following table.

TABLE VII. OWASP VULNERABILITIES

OWASP Top 10 Web Application
Security Risks 2017

Vulnerability
code

Injection A1

Broken Authentication A2

Sensitive Data Exposure A3

XML External Entities (XXE) A4

Broken Access Control A5

Security Misconfiguration A6

Cross-Site Scripting (XSS) A7

Insecure Deserialization. A8

Using Components with Known
Vulnerabilities

A9

Insufficient Logging&Monitoring A10

Vulnerability analyzes for both the traditional authentication system and the token authorization
system are shown in annexes 11 and 12 respectively. The following tables show the results of the
vulnerabilities found in each system.

TABLE VIII. CLASSIC AUTHENTICATION SYSTEM VULNERABILITIES

Vulnerability
Vulnerability

code

Base64_decode weak A2

PHPSESSID can supplant the session A5

Insufficient log y monitoring A10

Sensitive data shown: Server:
Apache, PHP

A3

TABLE IX. AUTHORIZATION SYSTEM VULNERABILITIES

Vulnerability
Vulnerability

code

Man in the middle en HTTP A2

Sensitive data shown: Server:
Apache2.4., Powered-by:PHP7.3.18,
OS:Debian

A3

No encryption from source to
destination (TLS)

A5

IP address in URI response A6

TABLE X. SECURITY MECHANISMS IN BOTH SYSTEMS

Classic authentication
scenario

Authorization using tokens
scenario

• A1

• A4

• A1

• A4

RUSSIAN LAW JOURNAL Volume XI (2023) Issue 3

387

• A6

• A7

• A8

• A9

• A7

• A8

• A9

• A10

6 mechanisms 6 mechanisms

Table 11 shows all the results of the measurement of each variable when analyzing the exchange
of messages to access web resources, taking into account a scale from 1 to 4, where 4 is satisfactory
and 1 indicates the worst performance. Each of the weightings are detailed in Annex 13 for a better
understanding.

TABLE XI. MEASUREMENT OF VARIABLES

Likert scale

Indicators
Classic

authenticatio
n scenario

Authorization
using tokens

scenario

Flow
communication
control

2 3

Authentication
and
authorization

2 3

Roles and scope 1 3

Traffic
encryption

1 3

Alerts and
monitorization

1 3

Threat
protection

3 3

TOTAL 10 18

V. DISCUSSION

When evaluating each system according to its own features and taking into account the
architecture defined for each scenario, it is evident that the authorization system using tokens has a
better access control to web resources in cloud-based platforms. Confidentiality and authentication
properties are much more efficient in authorization systems since they implement more robust
encryption algorithms such as SHA256 and more mechanisms are used to define user roles and to
allow access to resources, which guaratees client prioritization and has better access security
management. In the traditional authentication environment, the client credentials (username and
password) in the header of each request are only encoded using BASE64 code, but not encrypted,
which makes it extremely easy for an attacker to decode the header and obtain this sensitive
information.

Regarding the level of data exposure, the results show that traditional systems have deficiencies
to protect sensitive user information because the client must authenticate the request with a single
basic method by sending their user name and password in order to access the resource, causing a
high level of exposure, especially when data cannot be sent through private network infrastructures.
On the other hand, through the implementation of access tokens, 2 additional security mechanisms
are created, the distinction of users by roles and the scope token and its expiration time. In
addition, this approach also allows the client to be authenticated on third-party servers without the
need for user credentials and passwords to be sent to them, guaranteeing that even public network
infrastructures can be used.

Additionally, the efficiency in the communication time has a difference of almost double the
time in the average values between both systems. In the traditional authentication system with
login, it was observed that the response time began to decrease as the requests for resources

RUSSIAN LAW JOURNAL Volume XI (2023) Issue 3

388

increased, this is due to the fact that the session states are stored on the server. The tokenized
authorization system is stateless, therefore, a better response time was obtained.

The implementation of the OAuth 2.0 protocol defines a base model for the adoption of security
token systems (STS) in the effective control of access to resources.

REFERENCES

[1] NIST, «National Institute of Standards and Tecnology,» 2020. [En línea]. Available:

https://www.nist.gov/.
[2] R. H. L. L. P. &. M. S. Hill, Guide to cloud computing: principles and practice., Springer

Science & Business Media., 2012.
[3] LinuxFoundationX, «Introduction to Cloud Foundry and Cloud Native Software Architecture

(LFS132),» 2020. [En línea]. Available:
https://training.linuxfoundation.org/training/introduction-to-cloud-foundry-and-cloud-native-
software-architecture/.

[4] K. Kiani, «Four Attacks on OAuth – How to Secure Your OAuth Implementation,» 2020.
[5] Ping Identity, «The Essential OAuth Primer: Understanding OAuth for Securing Cloud APIs,»

2011.
[6] Richer, «OAuth 2 in Action,» 2017.
[7] Siriwardena, «Advanced API Security: OAuth 2.0 and Beyond,» 2019.
[8] O'Raw, «Security Evaluation of the OAuth 2.0 Framework,» 2015.
[9] E. C. H. T. D. T. P. &. B. K. Shernan, More guidelines than rules: CSRF vulnerabilities from

noncompliant OAuth 2.0 implementations., 2015.
[10] L. S. G. W. E. E. S. &. T. H. Seitz, Authentication and authorization for constrained

environments (ACE) using the OAuth 2.0 framework (ACE-OAuth)., 2018.
[11] E. Hardt, «The OAuth 2.0 Authorization Framework,» 2012.
[12] A. Lopez, Learning PHP 7, 2016.
[13] DigitalOcean, «Una introducción a OAuth 2,» 2020. [En línea]. Available:

https://www.digitalocean.com/community/tutorials/una-introduccion-a-oauth-2-es.
[14] Boyd, «Getting Started with OAuth 2.0,» 2012.
[15] Argyriou, «Security Flows in OAuth 2.0 Framework: A Case Study,» 2017.
[16] Mozilla, «Generalidades del protocolo HTTP,» 2020. [En línea]. Available:

https://developer.mozilla.org/es/docs/Web/HTTP/Overview.
[17] Sheldon, M. R. (2009). INTRODUCTION TO PROBABILITY AND STATISTICS FOR ENGINEERS AND

SCIENTISTS.
[18] STHDA. (2020). Normality Test in R. Obtenido de

http://www.sthda.com/english/wiki/normality-test-in-r
[19] Google Developers. (2020). PageSpeed Insights. Obtenido de

https://developers.google.com/speed/pagespeed/insights/?hl=es
[20] Shernan, E. C. (2015). More guidelines than rules: CSRF vulnerabilities from noncompliant

OAuth 2.0 implementations.

